
Pattern Formation in Magnetically 
Confined Plasmas:

Why Staircases are Inevitable

P.H. Diamond

CMTFO, CASS, Dept. of Physics, UCSD

Physics Colloquium, ZJU
June, 2015



Co-workers:

• Guilhem Dif-Pradalier; CEA, Cadarache, France

• Yusuke Kosuga; Kyushu University, Japan

• Ozgur Gurcan; Ecole Polytechnique, France

• Zhibin Guo; SNU, Korea

• Pei-Chun Hsu; UCSD, USA



Contents

• An Easier Problem: Pipe Flow

• The System: Tokamaks and Confinement

• Patterns:

– Avalanches

– Zonal Flows: includes something new !

• The Issues – Pattern Competition

• The Answer: Staircases

– Findings

– Jams

– Reality

• Discussion

– Implications

– Layering – A Broader View



A Simpler(?!) Problem:

à Turbulent Pipe Flow



• Essence of confinement:

– given device, sources; what profile is achieved?

–  = /

• Related problem: Pipe flow (turbulent)

a



Δ à pressure drop

Δ = ∗2

Balance: momentum transport to wall

(Reynolds stress) vs Δ
è Flow profile  = 2Δ/
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• Prandtl Mixing Length Theory (1932)

– Wall stress = ∗ = −/

– Absence of characteristic scale à

eddy viscosity

 ∼ ∗

 ∼ ∗ln(/)

 =  → , viscous layer à  = /∗

 ≡ mixing length, distance from wall

Analogy with kinetic theory …



0
viscous sublayer (linear)

Wall

(Core)

inertial sublayer à logarithmic (~ universal)

Problem: physics of ~
universal logarithmic profile?



Some key elements:

• Momentum flux driven process

• Turbulent diffusion model of transport eddy viscosity

• Mixing length:

~  à macroscopic, eddys span system

à ~ flat profile

• Self-similarity in radius

• Cut-off when  = 

• Reduce drag by creation of buffer layer i.e. steeper gradient than 

inertial sublayer (by polymer)



–→  Collecve Dynamics of Turbulent Eddy 
– ‘Aether’ I – First Quasi-Particle Model of Transport?!
− Kelvin, 1887

Aside: FYI – Historical Note



→  time delay between 
Reynolds stress and 
wave shear introduced

→  converts diffusion equation 
to wave equation

→ describes wave in ensemble 
of vortex quasi-particles

– c.f. “Worlds of Flow”, O. Darrigol 

ñá 22 ~~ vR



II) The System:
What is a Tokamak?

N.B. No programmatic advertising intended…

How does confinement work?



• Challenge: ignition -- reaction release more energy 
than the input energy
Lawson criterion:

à confinement  
à turbulent transport 

Magnetically confined plasma 

• Nuclear fusion: option for generating large 
amounts of carbon-free energy 
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DIII-D

ITER

• Turbulence: instabilities and collective oscillations 
à lowest frequency modes dominate the 
transport  
à drift wave 



Primer on Turbulence in Tokamaks I

• Strongly magnetized 

– Quasi 2D cells

– Localized by   ⋅  = 0 (resonance)

•  = + 
 × ̂

• , ,  driven

• Akin to thermal Rossby wave, with: g à magnetic curvature

• Resembles wave turbulence, not high  Navier-Stokes turbulence

•  ill defined, "" ≤ 100
• ,   ∼ /Δ ∼ 1à Kubo # ≈ 1
• Broad dynamic range



Primer on Turbulence in Tokamaks II

• Characteristic scale ~ few  à “mixing 

length”

• Characteristic velocity ~∗

• Transport scaling: ~~∗~,   ∼ 
• i.e. Bigger is better! è sets profile scale via heat 

balance (Why ITER is huge…)

• Reality: ~∗,  < 1 è why??

• 2 Scales, ∗ ≪ 1 è key contrast to pipe flow

2 scales:

 ≡gyro-radius

 ≡cross-section

∗ ≡ / è key ratio



• Hasegawa-Mima (                                              ) 

Drift wave model – Fundamental prototype 

• Hasegawa-Wakatani : simplest model incorporating instability
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d
dt
n = -D||Ñ||

2 (f - n)+D0Ñ
2n

rs
2 d
dt
Ñ2f = -D||Ñ||

2 (f - n)+nÑ2Ñ2fÑ^ × J^ +Ñ||J|| = 0

hJ|| = -Ñ||f +Ñ||pe

dne
dt

+ Ñ||J||

-n0 e
= 0

à vorticity: 

à density:

V = c
B
ẑ ´Ñf +Vpol

J^ = n e V
i
pol

d
dt
n-Ñ2f( ) = 0

à zonal flow being a counterpart of particle flux  

à PV flux = particle flux + vorticity flux 

à PV conservation in inviscid theory

QL:

à?

D||k
2
|| /w >>1 ® n ~ f

d
dt

f - rs
2Ñ2f( ) +u*¶yf = 0



III) Patterns in Tokamak
Turbulence

à Non-locality and Avalanches
à Zonal Flows



à “Truth is never pure and rarely simple” (Oscar Wilde)

Transport: Local or Non-local?

GBDχTrχnQ ↔   ∇- ,)(=

ò ¢¢Ñ¢-= rdrTrrQ )(),(k

Guilhem Dif-Pradalier et al. PRL 2009

[ ]22
0 Δ)(/~),( +′′ rrSrrκ -

• 40 years of fusion plasma modeling
− local, diffusive transport 

• 1995 → increasing evidence for:
− transport by avalanches, as in sand pile/SOCs
− turbulence propagation and invasion fronts
− “non-locality of transport”

• Physics:
− Levy flights, SOC, turbulence fronts…

• Fusion: 
− gyro-Bohm breaking 

(ITER: significant ρ*  extension)
→  fundamentals of turbulent transport modeling??



• Cells “pinned” by magnetic geometry à resonances

• Remarkable

Similarity:

Automaton toppling
↔ Cell/eddy overturning

Observe:

and can cooperate!

à Avalanches happen!



• ‘Avalanches’ form! – flux drive + geometrical ‘pinning’

• Avalanching is a likely cause of ‘gyro-Bohm breaking’ à Intermittent Bursts

è localized cells self-organize to form transient, extended transport events

• Akin domino toppling:

• Pattern competition

with shear flows! 

GK simulation also exhibits avalanching 
(Heat Flux Spectrum) (Idomura NF09)

Toppling front can
penetrate beyond region 
of local stability

Newman PoP96 (sandpile)
(Autopower frequency  spectrum of ‘flip’)

ß 1/ß



• How is transport suppressed?

è shear decorrelation!

• Back to sandpile model: 

• Avalanche coherence destroyed by shear flow

2D pile + 

sheared flow of 

grains

No
shear

shear

Shearing flow
decorrelates
Toppling sequence

Shear Flows !?



• Implications:

Spectrum of Avalanches

With shear

W/O shear

N.B.

- Profile steepens for unchanged toppling 

rules

- Distribution of avalanches fundamental 
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Shear Flows ‘Natural’ to Tokamaks

• Zonal Flows Ubiquitous for:
~ 2D fluids / plasmas

Ex: MFE devices, giant planets, stars…

R0 < 1

0B
r

W
r

Rotation      , Magnetization     , Stratification



Heuristics of Zonal Flows a): How Form?
Simple Example: Zonally Averaged Mid-Latitude Circulation

å-=
k

kyxxy kkvv
r

r
2ˆ~~ f

Rossby Wave:

 = −

 = 2 


 ,  = ∑ − 




∴  < 0 à Backward wave!

èMomentum convergence 

at stirring location



Some similarity to spinodal decomposition phenomena
à Both ‘negative diffusion’ phenomena
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MFE perspective on Wave Transport in DW Turbulence
• localized source/instability drive intrinsic to drift wave structure

• outgoing wave energy flux → incoming wave momentum flux          
→  counter flow spin-up!

• zonal flow layers form at excitation regions

Wave-Flows in Plasmas
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Zonal Flows I

• What is a Zonal Flow?

– n = 0 potential mode; m = 0 (ZFZF), with possible sideband (GAM)

– toroidally, poloidally symmetric ExB shear flow 

• Why are Z.F.’s important?

– Zonal flows are secondary (nonlinearly driven):

• modes of minimal inertia (Hasegawa et. al.; Sagdeev, et. al. ‘78)

• modes of minimal damping (Rosenbluth, Hinton ‘98)

• drive zero transport (n = 0)

– natural predators to feed off and retain energy released by 

gradient-driven microturbulence



Physics:                                        ZF!

PV conservation
• PV conservation  dq/dt=0
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relative 
vorticity

planetary
vorticity

density 
(guiding center)

q = n-Ñ2f

ion vorticity
(polarization)

GFD:                                                            Plasma: 
Quasi-geostrophic system                     Hasegawa-Wakatani system

¶
¶t

Ñ2y - Ld
-2y( ) + b ¶

¶x
y + J(y,Ñ2y) = 0

q = Ñ2y +by

H-W à H-M:

Q-G:

Physics: Dy®D Ñ2y( ) Dr®Dn®D Ñ2f( )

1
wci

¶
¶t

Ñ2f - rs
-2f( ) - 1

Ln

¶
¶y
f + rs
Ln
J(f,Ñ2f) = 0

• Charney-Haswgawa-Mima equation 



Zonal Flows II
• Fundamental Idea:

– Potential vorticity transport + 1 direction of translation symmetry                           
→  Zonal flow in magnetized plasma / QG fluid

– Kelvin’s theorem is ultimate foundation

• G.C. ambipolarity breaking → polarization charge flux → Reynolds force
– Polarization charge

– so                                                                   ‘PV transport’ 

– If 1 direction of symmetry (or near symmetry):

eGCi G¹G ,

)()(,
22 fffr eGCi nn -=Ñ-

polarization length scale ion GC

0~~ 22 ¹Ñ^fr rEv

polarization flux

ErErrE vvv ^^ -¶=Ñ- ~~~~ 22 fr (Taylor, 1915)

ErEr vv ^¶- ~~

→ What sets cross-phase?

Reynolds force Flow

electron density



• Coherent shearing: (Kelvin, G.I. Taylor, Dupree’66, BDT‘90)

– radial scattering +       →  hybrid decorrelation

– →

– shaping, flux compression: Hahm, Burrell ’94

• Other shearing effects (linear):

– spatial resonance dispersion:

– differential response rotation → especially for kinetic curvature effects

→  N.B. Caveat: Modes can adjust to weaken effect of external shear 

(Carreras, et. al. ‘92; Scott  ‘92)

Zonal Flows Shear Eddys I

'EV

^Dkr
2

cE DVk tq /1)3/'( 3/122 =^
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Response shift 
and dispersion



Shearing II

• Zonal Shears: Wave kinetics (Zakharov et. al.; P.D. et. al. ‘98, et. seq.)

• ;

• Mean Field Wave Kinetics

rVkdtdk Er ¶+-¶= /)(/ qw

tq Err Vkkk ¢-= )0(:

å ¢=

=

q
qkqEk

kr

VkD

Dk

,

2

,
2

2

~  

:

t

td

q

Mean 
shearing

Zonal
Random
shearing

}{

}{)()(

NCNN
k

D
k

N
t

NCN
k
NVk

r
NVV

t
N

k
r

k
r

kEgr

-=
¶
¶

¶
¶

-
¶
¶

Þ

-=
¶
¶
×+

¶
¶

-Ñ×++
¶
¶

r

rr
rr

g

gw q

Zonal shearing

- Wave ray chaos (not shear RPA) 

underlies Dk → induced diffusion

- Induces wave packet dispersion

- Applicable to ZFs and GAMs 
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Coherent interaction approach (L. Chen et. al.)



Shearing III
• Energetics: Books Balance for Reynolds Stress-Driven Flows!

• Fluctuation Energy Evolution – Z.F. shearing

• Fate of the Energy: Reynolds work on Zonal Flow

• Bottom Line:

– Z.F. growth due to shearing of waves

– “Reynolds work” and “flow shearing” as relabeling → books balance

– Z.F. damping emerges as critical; MNR ‘97
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Equivalent to PV transport
(c.f. Gurcan et. al. 2010)



Non-perturbative approaches

- PV mixing in space is essential in ZF generation.
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%uyÑ
2 %f = -¶y %uy %uxTaylor identity:

vorticity flux       Reynolds force

General structure of PV flux?
àrelaxation principles!

What form must the PV flux have so as to dissipate 
enstrophy while conserving energy? 

What form must the PV flux have so as to

satisfy the joint reflection symmetry principle

for PV transport/mixing? 

Key:
How represent 
inhomogeneous 
PV mixing 

most treatment of ZF:
-- perturbation theory
-- modulational instability    

(test shear + gas of waves)
~ linear theory

-> physics of evolved PV mixing?
-> something more general?

non-perturb model 1: use selective decay principle

non-perturb model 2: use joint reflection symmetry 
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• 2D turbulence conservation of 
energy and potential enstrophy

à dual cascade
à Minimum enstrophy state

LR ~ U
b

forward enstrophy
cascading

forcing

General principle: selective decay

inverse energy 
cascading

• eddy turnover rate and Rossby
wave frequency mismatch are 
comparable 

à Rhines scale

zonal flow 

wave wave

Rhines s
cale



• flux?  what can be said about dynamics? 

structural approach
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minimum enstrophy
relaxation

(Bretherton & Haidvogel 1976)

Taylor relaxation
(J.B. Taylor, 1974)

turbulence 2D hydro 3D MHD

conserved quantity
(constraint)

total kinetic energy global magnetic helicity

dissipated quantity
(minimized)

fluctuation potential 
enstrophy

magnetic energy

final state
minimum enstrophy state

flow structure emergent

Taylor state

force free B field configuration

¶
¶t
W< 0ÞGE ÞGq

¶
¶t
EM < 0ÞGH

Using selective decay for flux 

à structural approach (Boozer): What form must the helicity have so as to
dissipate magnetic-energy while conserving helicity? 

General principle based on general physical ideas à useful for dynamical model

à structural approach (this work): What form must the PV flux have so as to
dissipate enstrophy while conserving energy? 

dual casc
ade

analogy



PV flux
à PV conservation 

mean field PV: 

selective decay

à energy conserved                                 

à enstrophy minimized
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relaxed state:

Homogenization of             à allows staircase 
¶y q
ux

Gq =
1
ux

¶y m ¶y
¶y q
ux
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diffusion and hyper diffusion of PV

<-->  usual story : Fick’s diffusion
diffusion parameter calculated by  pert
urbation theory, numerics…

ℓc º
ux

¶y q
characteristic scale 

: zonal flow growth

: zonal flow damping
(hyper viscosity-dominated)

ℓ> ℓc
ℓ< ℓc

Structure of PV flux
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Rhines scale LR ~ U
b

: wave-dominat
ed

: eddy-dominate
d

ℓ> LR
ℓ< LR



relaxed state:   homogenization of                     à

à Zonal flows track the PV gradient à PV staircase 

• Highly structured profile of the staircase is reconciled with the homoge
nization or mixing process required to produce it.

• Staircase may arise naturally as a consequence of minimum enstrophy
relaxation. 
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PV staircase
¶y q
ux

PV gradient large
where zonal flow large



Feedback Loops I
• Closing the loop of shearing  and Reynolds work

• Spectral ‘Predator-Prey’ equations
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Predator → Zonal flow, |ϕq|2



Feedback Loops II
• Recovering the ‘dual cascade’:

– Prey → <N> ~ <Ω>  ⇒ induced diffusion to high kr

– Predator →   

• Mean Field Predator-Prey Model 

(P.D. et. al. ’94, DI2H ‘05)

System Status

⇒ Analogous →  forward potential

enstrophy cascade; PV transport

2
,

2 ~|| qf Eq V
⇒ growth of n=0, m=0 Z.F. by turbulent Reynolds work

⇒ Analogous →  inverse energy cascade
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IV) The Central Question: Secondary Pattern Selection ?!

• Two secondary structures suggested

– Zonal flow à quasi-coherent, regulates transport via 

shearing

– Avalanche à stochastic, induces extended transport 

events

• Both flux driven… by relaxation

• Nature of co-existence??

• Who wins? Does anybody win?



V) Staircases and 
Traffic Jams

Single Barrier à Lattice of Shear Layers

à Jam Patterns



Highlights

Observation of ExB staircases

Model extension from Burgers to telegraph

Analysis of telegraph eqn. predicts heat flux jam

finite response time

- scale of jam comparable to staircase step

→ Failure of convenonal theory

→ like drivers’ response me in traffic

(emergence of particular scale???)



Motivation: ExB staircase formation (1)

• `ExB staircase’ is observed to form

- so-named after the analogy to PV staircases 
and atmospheric jets

- Step spacing à avalanche  outer-scale

- flux driven, full f simulation

- Region of the extent 
interspersed by temp. corrugation/ExB jets

- Quasi-regular pattern of shear layers 
and profile corrugations

(G. Dif-Pradalier, P.D. et al. Phys. Rev. E. ’10)

→ ExB staircases

• ExB flows often observed to self-organize in magnetized plasmas
eg.  mean sheared flows, zonal flows, ...



ExB Staircase (2)

• Important feature: co-existence of shear flows and avalanches

- Can co-exist by separating regions into:

- What is process of self-organization linking avalanche scale to ExB step scale?

i.e. how explain the emergence of the step scale   ???

• How understand the formation of ExB staircase???

1. avalanches of the size

- Seem mutually exclusive ?!?

2. localized strong corrugations + jets

→ strong ExB shear prohibits transport

→ avalanches smooth out corrugaons



Some Observations:
Staircases build up from the edge

→ staircases may not be related to zonal 
flow eigenfunctions

→ How describe generaon mechanism??

(GYSELA simulation)



Corrugation points and rational surfaces – no relation!

Step location not tied to magnetic
geometry structure in a simple way



Towards a model

corrugated profile           ExB staircase

• An idea: jam of heat avalanche

• How do we actually model heat avalanche ‘jam’??? → origin in dynamics?

• How do we understand quasi-regular pattern of ExB staircase, generated from stochastic 
heat avalanche???

→ corrugaon of profile occurs by 
‘jam’ of heat avalanche flux

→ accumulaon of heat increment
→ staonary corrugated profile

→ time delay between           and       
is crucial element

＊

like drivers’ response time in traffic



Traffic jam dynamics: ‘jamiton’

• Simulation of traffic jam formation

→ Jamitons (Flynn, et.al., ’08)

http://math.mit.edu/projects/traffic/

• A model for Traffic jam dynamics → Whitham

→ car density

→ traffic flow velocity

→ an equilibrium traffic flow

→ driver’s response time

→ Instability occurs when

→ Indicave of jam formaon

→ clustering instability

n.b. I.V.P. → decay study



Heat avalanche dynamics model (`the usual’)

• Heat Balance Eq.:

→ joint reflectional symmetry (Hwa+Kardar’92, Diamond+Hahm ’95)

→ up to source and noise

• Heat Flux            ?

- Usual:

Hwa+Kardar ’92, P.D. + Hahm ’95, Carreras, et al. ’96, ... GK simulation, ... Dif-Pradalier ’10 

•       :deviaon from marginal profile → conserved order parameter

hyperdiffusion

lowest order → Burgers equaon

→ ulize symmetry argument, ala’ Ginzburg-Landau



• An extension: a finite time of relaxation of       toward SOC flux state

An extension of the heat avalanche dynamics

• Dynamics of heat avalanche:

→ Burgers
(P.D. + T.S.H. ’95)

New: finite response time

→ In principle large near criticality (〜 critical slowing down)

i.e. enforces time delay between       and heat flux

n.b. model for heat evolution

diffusion → Burgers → Telegraph

→ Telegraph equation

(Guyot-Krumhansl)

N.B.: Contrast quasi-linear theory!



Relaxation time: the idea

• What is ‘     ’ physically?

• A useful analogy:

→ Learn from traffic jam dynamics

heat avalanche dynamics traffic flow dynamics

temp. deviation from marginal profile local car density

heat flux traffic flow

mean SOC flux (ala joint relflection 
symmetry)

equilibrium, steady traffic flow

heat flux relaxation time driver’s response time

- driver’s response can induce traffic jam
- jam in avalanche → profile corrugaon → staircase?!?

- Key: instantaneous flux vs. mean flux



• Consider an initial avalanche, 
with amplitude ,
propagating at the speed 

Analysis of heat avalanche dynamics via telegraph
• How do heat avalanches jam?

→ turbulence model dependent

• Dynamics:

two characteristic propagation speeds

pulse

→ In short response me (usual) heat 
flux wave propagates faster

→ In long response me, heat flux wave 
becomes slower and pulse starts overtaking. 
What happens???

‘Heat flux wave’:
telegraph → wavy feature



Analysis of heat avalanche jam dynamics

• negative heat conduction instability occurs (as in clustering instability in traffic jam dynamics)

n.b. akin to negative viscosity instability of ZF in DW turbulence

• In large tau limit, what happens?

• Recall plasma response time akin to driver’s response time in traffic dynamics

→ Heat flux jams!!

<0 when overtaking

→ clustering instability

instead ZF as secondary mode in the gas of primary DW

è Heat flux ‘jamiton’ as secondary mode in the gas of primary avalanches



Analysis of heat avalanche jam dynamics

• Growth rate of the jamiton instability

• Threshold for instability

• Scale for maximum growth

n.b. 
→ clustering instability strongest near cricality

from

→ staircase size, 

→ crical minimal delay me

, from saturation: consider shearing



Scaling of characteristic jam scale

• Saturation: Shearing strength to suppress clustering instability

→ esmate, only

• Characteristic scale

- Geometric mean of

- ‘standard’ parameters: 

Jam growth → profile corrugaon → ExB staircase →

→ saturated amplitude:

: ambient diffusion length in 1 relaxation timeand



Jam growth qualitatively consistent with staircase formation 

Dif-Pradalier ’13 caveat: based on model with compressional waves

good agreement in 
early stage

outer radius: 
large chi
→ smear out 
instability
or
→ heat flux waves 
propagate faster
→ harder to 
overtake, jam

NL evolution ???











Summary

• A model for ExB staircase formation

• Analysis of heat flux jam dynamics

- Negative conduction instability as onset of jam formation

- Growth rate, threshold, scale for maximal growth

- Qualitative estimate: scale for maximal growth 

- Heat avalanche jam → profile corrugaon → ExB staircase

- model developed based on analogy to traffic dynamics → telegraph eqn.

→ comparable to staircase step size



Ongoing Work

• This analysis ↔ set in context of heat transport

• Implications for momentum transport? è

– consider system of flow, wave population, wave 

momentum flux

– time delay set by decay of wave population 

correlation due ray stochastization à elasticity

– flux limited PV transport allows closure of system



Results:
• Propagating (radially) zonal shear waves 

predicted, as well as vortex mode

• For  larger, Z.F. state transitions to LCO, 

rather than fixed point

•  due elastization necessarily impacts 

dynamics of LàIàH transition
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