Pattern Formation in Magnetically Confined Plasmas: Why Staircases are Inevitable

P.H. Diamond

CMTFO, CASS, Dept. of Physics, UCSD

Physics Colloquium, ZJU June, 2015

Co-workers:

- Guilhem Dif-Pradalier; CEA, Cadarache, France
- Yusuke Kosuga; Kyushu University, Japan
- Ozgur Gurcan; Ecole Polytechnique, France
- Zhibin Guo; SNU, Korea
- Pei-Chun Hsu; UCSD, USA

Contents

- An Easier Problem: Pipe Flow
- The System: Tokamaks and Confinement
- Patterns:
 - Avalanches
 - Zonal Flows: includes something new !
- The Issues Pattern Competition
- The Answer: Staircases
 - Findings
 - Jams
 - Reality
- Discussion
 - Implications
 - Layering A Broader View

A Simpler(?!) Problem:→ Turbulent Pipe Flow

- Essence of confinement:
 - given device, sources; what profile is achieved? —
 - $\tau_E = W/P_{in}$
- Related problem: Pipe flow (turbulent)

→ Flow profile

• Prandtl Mixing Length Theory (1932)

- Wall stress =
$$\rho V_*^2 = -\rho v_T \frac{\partial u}{\partial x}$$

eddy viscosity

– Absence of characteristic scale \rightarrow

 $v_T \sim V_* x$ $u \sim V_* \ln(x/x_0)$ $x \equiv mixing length, distance from wall$ Analogy with kinetic theory ...

 $v_T = v \rightarrow x_0$, viscous layer $\rightarrow x_0 = v/V_*$

Some key elements:

- Momentum flux driven process
- Turbulent diffusion model of transport eddy viscosity
- Mixing length:
 - ~ $x \rightarrow$ macroscopic, eddys span system
 - \rightarrow ~ flat profile
- Self-similarity in radius
- Cut-off when $v_T = v$
- Reduce drag by creation of buffer layer i.e. steeper gradient than inertial sublayer (by polymer)

Aside: FYI – Historical Note

- \rightarrow Collective Dynamics of Turbulent Eddy
- 'Aether' I First Quasi-Particle Model of Transport?!
- Kelvin, 1887
 - XLV. On the Propagation of Laminar Motion through a turbulently moving Inviscid Liquid. By Sir WILLIAM THOMSON, LL.D., F.R.S.*

1. IN endeavouring to investigate turbulent motion of water between two fixed planes, for a promised communication to Section A of the British Association at its coming Meeting in Manchester, I have found something seemingly towards a solution (many times tried for within the last twenty years) of the problem to construct, by giving vortex motion to an incompressible inviscid fluid, a medium which shall transmit waves of laminar motion as the luminiferous æther transmits waves of light.

2. Let the fluid be unbounded on all sides, and let u, v, w be the velocity-components, and p the pressure at (x, y, z, t). We have

$$\frac{du}{dx} + \frac{dv}{dy} + \frac{dw}{dz} = 0 \quad . \quad . \quad . \quad (1),$$

* Communicated by the Author, having been read before Section A of the British Association at its recent Meeting in Manchester. 21. Eliminating the first member from this equation, by (34), we find $\frac{d^2f}{dt^2} = \frac{2}{9} R^2 \frac{d^2f}{dy^2} \qquad (51).$

- $R^2 \sim \langle \widetilde{V}^2 \rangle$ Thus we have the very remarkable result that laminar disturbance is propagated according to the well-known mode of waves of distortion in a homogeneous elastic solid; and that the velocity of propagation is $\frac{\sqrt{2}}{3}$ R, or about 47 of the average velocity of the turbulent motion of the fluid.
 - → time delay between Reynolds stress and wave shear introduced
 - → converts diffusion equation to wave equation
 - → describes wave in ensemble of vortex quasi-particles
 - c.f. "Worlds of Flow", O. Darrigol

II) The System: What is a Tokamak? How does confinement work?

N.B. No programmatic advertising intended...

Magnetically confined plasma

- Nuclear fusion: option for generating large amounts of carbon-free energy
- Challenge: ignition -- reaction release more energy than the input energy Lawson criterion:

 $n_i \tau_E T_i > 3 \times 10^{21} \text{m}^{-3} \text{s keV}$

 \rightarrow confinement

 \rightarrow turbulent transport

Turbulence: instabilities and collective oscillations
 → lowest frequency modes dominate the

transport \rightarrow drift wave

Primer on Turbulence in Tokamaks I

- Strongly magnetized
 - Quasi 2D cells
 - Localized by $\vec{k} \cdot \vec{B} = 0$ (resonance)
- $\vec{V}_{\perp} = + \frac{c}{B} \vec{E} \times \hat{z}$
- ∇T_e , ∇T_i , ∇n driven
- Akin to thermal Rossby wave, with: $g \rightarrow$ magnetic curvature
- Resembles wave turbulence, not high Re Navier-Stokes turbulence
- Re ill defined, "Re" ≤ 100
- , $K \sim \tilde{V} \tau_c / \Delta \sim 1 \rightarrow Kubo \# \approx 1$
- Broad dynamic range

Primer on Turbulence in Tokamaks II

• 2 Scales, $\rho_* \ll 1 \Rightarrow$ key contrast to pipe flow

Hasegawa-Wakatani : simplest model incorporating instability ٠

٠

$$V = \frac{c}{B} \hat{z} \times \nabla \phi + V_{pol}$$

$$J_{\perp} = n |e| V_{pol}^{i} \qquad \eta J_{\parallel} = -\nabla_{\parallel} \phi + \nabla_{\parallel} p_{e}$$

$$\nabla_{\perp} \cdot J_{\perp} + \nabla_{\parallel} J_{\parallel} = 0 \qquad \Rightarrow \qquad \text{vorticity:} \qquad \rho_{s}^{2} \frac{d}{dt} \nabla^{2} \phi = -D_{\parallel} \nabla_{\parallel}^{2} (\phi - n) + v \nabla^{2} \nabla^{2} \phi$$

$$\frac{dn_{e}}{dt} + \frac{\nabla_{\parallel} J_{\parallel}}{-n_{0} |e|} = 0 \qquad \Rightarrow \qquad \text{density:} \qquad \frac{d}{dt} n = -D_{\parallel} \nabla_{\parallel}^{2} (\phi - n) + D_{0} \nabla^{2} n$$

$$\Rightarrow PV \text{ conservation in inviscid theory} \qquad \frac{d}{dt} (n - \nabla^{2} \phi) = 0$$

$$\Rightarrow PV \text{ flux = particle flux + vorticity flux} \qquad \text{QL:} \qquad \frac{\partial}{\partial t} \langle n \rangle = -\frac{\partial}{\partial r} \langle \tilde{v}, \tilde{n} \rangle$$

$$\Rightarrow \text{ zonal flow being a counterpart of particle flux} \qquad \Rightarrow \frac{\partial}{\partial t} \langle \nabla^{2} \phi \rangle = -\frac{\partial}{\partial r} \langle \tilde{v}, \nabla^{2} \tilde{\phi} \rangle$$

$$Hasegawa-Mima (D_{\parallel} k_{\parallel}^{2} / \omega >> 1 \rightarrow n \sim \phi) \qquad = -\frac{\partial^{2}}{\partial r^{2}} \langle \tilde{v}, \tilde{v}_{\phi} \rangle$$

14

III) Patterns in Tokamak Turbulence

→ Non-locality and Avalanches
→ Zonal Flows

→ "Truth is never pure and rarely simple" (Oscar Wilde) Transport: Local or Non-local?

- 40 years of fusion plasma modeling
 - local, diffusive transport

$$Q = -n\chi(r) \nabla T, \quad \chi \leftrightarrow D_{GE}$$

- 1995 \rightarrow increasing evidence for:
 - transport by avalanches, as in sand pile/SOCs
 - turbulence propagation and invasion fronts
 - "non-locality of transport"

$$Q = -\int \kappa(r, r') \nabla T(r') dr'$$

 $\kappa(r, r') \sim S_0 / [(r - r')^2 + \Delta^2]$

- Physics:
 - Levy flights, SOC, turbulence fronts...
- Fusion:
 - gyro-Bohm breaking
 - (ITER: significant ρ_* extension)
 - → fundamentals of turbulent transport modeling??

Guilhem Dif-Pradalier et al. PRL 2009

Observe:

Cells "pinned" by magnetic geometry → resonances

TABLE I. Analogies between the sandpile transport model and a turbulent transport model.

Remarkable

Similarity:

Turbulent transport in toroidal plasmas	Sandpile model
Localized fluctuation (eddy)	Grid site (cell)
Local turbulence mechanism:	Automata rules:
Critical gradient for local instability	Critical sandpile slope (Z_{crit})
Local eddy-induced transport	Number of grains moved if unstable (N_i)
Total energy/particle content	Total number of grains (total mass)
Heating noise/background fluctuations	Random rain of grains
Energy/particle flux	Sand flux
Mean temperature/density profiles	Average slope of sandpile
Transport event	Avalanche
Sheared electric field	Sheared flow (sheared wind)

Ζ"

h"

Automaton toppling ↔ Cell/eddy overturning

→ Avalanches happen!

FIG. 1. A cartoon representation of the simple cellular automata rules used to model the sandpile.

N

and can cooperate!

• '<u>Avalanches</u>' form! – flux drive + geometrical 'pinning'

GK simulation also exhibits avalanching (Heat Flux Spectrum) (Idomura NF09)

• Avalanching is a likely cause of 'gyro-Bohm breaking' \rightarrow Intermittent Bursts

→ localized cells self-organize to form transient, extended transport events

- Akin domino toppling:
- Pattern competition with shear flows!

Toppling front can penetrate beyond region of local stability

Shear Flows !?

FIG. 11. Time evolution of the overturning sites (like Fig. 4). The avalanches do not appear continous in time because only every 50th time step is shown. (a) The shear-free case shows avalanches of all lengths over the entire radius. (b) The case with sheared flow shows the coherent avalanches being decorrelated in the shear zone in the middle of the pile.

How is transport suppressed?

→ shear decorrelation!

Back to sandpile model:

2D pile +

sheared flow of

grains

Shearing flow decorrelates Toppling sequence

FIG. 10. A cartoon of the sandpile with a shear flow zone. The whole pile is flowing to the right at the top and to the left at the bottom connected by a variable sized region of sheared flow.

Avalanche coherence destroyed by shear flow

Implications:

- Profile steepens for <u>unchanged</u> toppling rules
- Distribution of avalanches fundamental

FIG. 14. The slopes of a sandpile with a shear region in the middle, including all the shear effects (diamonds) and just the transport decorrelation and the linear effect (circles).

FIG. 11. Time evolution of the overturning sites (like Fig. 4). The avalanches do not appear continous in time because only every 50th time step is shown. (a) The shear-free case shows avalanches of all lengths over the entire radius. (b) The case with sheared flow shows the coherent avalanches being decorrelated in the shear zone in the middle of the pile.

Shear Flows 'Natural' to Tokamaks

Zonal Flows Ubiquitous for:

~ 2D fluids / plasmas $R_0 < 1$ Rotation $\vec{\Omega}$, Magnetization \vec{B}_0 , Stratification Ex: MFE devices, giant planets, stars...

21

Heuristics of Zonal Flows a): How Form?

Simple Example: Zonally Averaged Mid-Latitude Circulation

- classic GFD example: Rossby waves + Zonal flow (c.f. Vallis '07, Held '01)
- Key Physics:

- … "the central result that a rapidly rotating flow, when stirred in a localized region, will converge angular momentum into this region." (I. Held, '01)
- ► Outgoing waves ⇒ incoming wave momentum flux

- Local Flow Direction (northern hemisphere):
 - eastward in source region
 - westward in sink region
 - set by $\beta > 0$
 - Some similarity to spinodal decomposition phenomena
 → Both 'negative diffusion' phenomena

Wave-Flows in Plasmas

MFE perspective on Wave Transport in DW Turbulence

localized source/instability drive intrinsic to drift wave structure

• outgoing wave energy flux \rightarrow incoming wave momentum flux

 V_{gr}

- \rightarrow counter flow spin-up!
- zonal flow layers form at excitation regions

24

Zonal Flows I

- What is a Zonal Flow?
 - n = 0 potential mode; m = 0 (ZFZF), with possible sideband (GAM)
 - toroidally, poloidally symmetric *ExB* shear flow
- Why are Z.F.'s important?
 - Zonal flows are secondary (nonlinearly driven):
 - modes of minimal inertia (Hasegawa et. al.; Sagdeev, et. al. '78)
 - modes of minimal damping (Rosenbluth, Hinton '98)
 - drive zero transport (*n* = 0)
 - natural predators to feed off and retain energy released by gradient-driven microturbulence

• PV conservation dq/dt=0

GFD:	Plasma:
Quasi-geostrophic system	Hasegawa-Wakatani system
$q = \nabla^2 \psi + \beta y$ relative planetary vorticity vorticity	$q = n - \nabla^2 \phi$ density ion vorticity (guiding center) (polarization)
Physics: $\Delta y \rightarrow \Delta \left(\nabla^2 \psi \right)$	Physics: $\Delta r \to \Delta n \to \Delta (\nabla^2 \phi z)$

• Charney-Haswgawa-Mima equation

$$\begin{array}{l} n = n_0 + \tilde{n} \\ \tilde{n} \sim \frac{e\tilde{\phi}}{T} \end{array} \quad H-W \xrightarrow{\rightarrow} H-M: \quad \frac{1}{\omega_{ci}} \frac{\partial}{\partial t} \left(\nabla^2 \phi - \rho_s^{-2} \phi \right) - \frac{1}{L_n} \frac{\partial}{\partial y} \phi + \frac{\rho_s}{L_n} J(\phi, \nabla^2 \phi) = 0 \\ Q-G: \quad \frac{\partial}{\partial t} \left(\nabla^2 \psi - L_d^{-2} \psi \right) + \beta \frac{\partial}{\partial x} \psi + J(\psi, \nabla^2 \psi) = 0 \end{array}$$

26

Zonal Flows II

- Fundamental Idea:
 - Potential vorticity transport + 1 direction of translation symmetry
 → Zonal flow in magnetized plasma / QG fluid
 - Kelvin's theorem is ultimate foundation
- G.C. ambipolarity breaking \rightarrow polarization charge flux \rightarrow Reynolds force
 - Polarization charge $\rightarrow \rho^2 \nabla^2 \phi = n_{i,GC}(\phi) n_e(\phi)$ polarization length scale $\rightarrow ion GC \rightarrow electron density$
 - SO $\Gamma_{i,GC} \neq \Gamma_e \implies \rho^2 \left\langle \widetilde{v}_{rE} \nabla_{\perp}^2 \widetilde{\phi} \right\rangle \neq 0 \iff$ 'PV transport'

→ polarization flux → What sets cross-phase?

If 1 direction of symmetry (or near symmetry):

$$-\rho^{2} \left\langle \widetilde{v}_{rE} \nabla_{\perp}^{2} \widetilde{\phi} \right\rangle = -\partial_{r} \left\langle \widetilde{v}_{rE} \widetilde{v}_{\perp E} \right\rangle \quad \text{(Taylor, 1915)}$$

 $-\partial_r \langle \widetilde{v}_{rE} \widetilde{v}_{\perp E} \rangle$ \longrightarrow Reynolds force \longrightarrow Flow

Zonal Flows Shear Eddys I

- Coherent shearing: (Kelvin, G.I. Taylor, Dupree'66, BDT'90)
 - radial scattering + $\langle V_E \rangle' \rightarrow$ hybrid decorrelation
 - $k_r^2 D_\perp \rightarrow (k_\theta^2 \langle V_E \rangle^2 D_\perp / 3)^{1/3} = 1 / \tau_c$
 - shaping, flux compression: Hahm, Burrell '94

Time

Other shearing effects (linear):

Response shift and dispersion

- spatial resonance dispersion: $\omega k_{\parallel}v_{\parallel} \Rightarrow \omega k_{\parallel}v_{\parallel} k_{\theta} \langle V_{E} \rangle'(r r_{0})$
- differential response rotation \rightarrow especially for kinetic curvature effects
- → N.B. Caveat: Modes can adjust to weaken effect of external shear (Carreras, et. al. '92; Scott '92)

Shearing II

- Zonal Shears: Wave kinetics (Zakharov et. al.; P.D. et. al. '98, et. seq.) Coherent interaction approach (L. Chen et. al.)
- $dk_r / dt = -\partial(\omega + k_\theta V_E) / \partial r; V_E = \langle V_E \rangle + \widetilde{V}_E$ Mean $:k_r=k_r^{(0)}-k_\theta V_E^\prime \tau$

shearing

 $:\left\langle \delta k_{r}^{2}\right\rangle =D_{k}\tau$ Zonal Random $D_k = \sum_{q} k_{\theta}^2 \left| \widetilde{V}_{E,q}' \right|^2 \tau_{k,q}$ shearing

Mean Field Wave Kinetics $\frac{\partial N}{\partial t} + (\vec{V}_{gr} + \vec{V}) \cdot \nabla N - \frac{\partial}{\partial r} (\omega + k_{\theta} V_E) \cdot \frac{\partial N}{\partial \vec{k}} = \gamma_{\vec{k}} N - C\{N\} - \text{Applicable to ZFs and GAMs}$ $\Rightarrow \frac{\partial}{\partial t} \langle N \rangle - \frac{\partial}{\partial k_r} D_k \frac{\partial}{\partial k_r} \langle N \rangle = \gamma_{\bar{k}} \langle N \rangle - \langle C \{N\} \rangle$ **L** Zonal shearing

- Wave ray chaos (not shear RPA)
 - underlies $D_k \rightarrow$ induced diffusion
- Induces wave packet dispersion

Shearing III

- Energetics: Books Balance for Reynolds Stress-Driven Flows!
- Fluctuation Energy Evolution Z.F. shearing

$$\int d\vec{k} \,\omega \left(\frac{\partial}{\partial t} \langle N \rangle - \frac{\partial}{\partial k_r} D_k \frac{\partial}{\partial k_r} \langle N \rangle \right) \Rightarrow \frac{\partial}{\partial t} \langle \varepsilon \rangle = -\int d\vec{k} V_{gr}(\vec{k}) D_{\vec{k}} \frac{\partial}{\partial k_r} \langle N \rangle \qquad V_{gr} = \frac{-2k_r k_\theta V_* \rho_s^2}{\left(1 + k_\perp^2 \rho_s^2\right)^2}$$

Point: For $d\langle \Omega \rangle / dk_r < 0$, Z.F. shearing damps wave energy

• Fate of the Energy: Reynolds work on Zonal Flow

Modulational $\partial_t \delta V_\theta + \partial \left(\delta \left\langle \widetilde{V}_r \widetilde{V}_\theta \right\rangle \right) / \partial r = -\gamma \delta V_\theta$ Instability $k k_\theta \delta \Omega$

 $\delta \left\langle \widetilde{V}_r \widetilde{V}_{\theta} \right\rangle \sim \frac{k_r k_{\theta} \delta \Omega}{\left(1 + k_{\perp}^2 \rho_s^2\right)^2}$

- Bottom Line:
 - Z.F. growth due to shearing of waves
 - "Reynolds work" and "flow shearing" as relabeling \rightarrow books balance
 - Z.F. damping emerges as critical; MNR '97

N.B.: Wave decorrelation essential: Equivalent to PV transport (c.f. Gurcan et. al. 2010)

Non-perturbative approaches

General principle: selective decay

Using selective decay for flux

		minimum enstrophy relaxation (Bretherton & Haidvogel 1976)	nalogy (J.B. Taylor, 1974)	
dual casc ade	turbulence	2D hydro	3D MHD	
	conserved quantity (constraint)	total kinetic energy	global magnetic helicity	
	dissipated quantity (minimized)	fluctuation potential enstrophy	magnetic energy	
	final state	minimum enstrophy state	Taylor state	
		flow structure emergent	force free B field configuration	
	structural approach	$\frac{\partial}{\partial t}\Omega < 0 \Longrightarrow \Gamma_E \Longrightarrow \Gamma_q$	$\frac{\partial}{\partial t}E_{M} < 0 \Longrightarrow \Gamma_{H}$	

• flux? what can be said about dynamics?

→ structural approach (this work): What form must the PV flux have so as to dissipate enstrophy while conserving energy?

General principle based on general physical ideas ightarrow useful for dynamical model

33

<u>PV flux</u>

 \rightarrow PV conservation

mean field PV:

$$\frac{\partial \langle q \rangle}{\partial t} + \partial_{y} \langle v_{y} q \rangle = v_{0} \partial_{y}^{2} \langle q \rangle$$

$$\Gamma_{q} : \text{mean field PV flux}$$

Key Point: what form does PV fl ux have s/t dissipate enstrophy, conserve energy

selective decay

$$\Rightarrow \text{ energy conserved} \qquad E = \int \frac{\left(\partial_{y} \langle \phi \rangle\right)^{2}}{2} \\ \frac{\partial E}{\partial t} = \int \langle \phi \rangle \partial_{y} \Gamma_{q} = -\int \partial_{y} \langle \phi \rangle \Gamma_{q} \qquad \Rightarrow \Gamma_{q} = \frac{\partial_{y} \Gamma_{E}}{\partial_{y} \langle \phi \rangle} \\ \Rightarrow \text{ enstrophy minimized} \qquad \Omega = \int \frac{\langle q \rangle^{2}}{2} \\ \frac{\partial \Omega}{\partial t} = -\int \langle q \rangle \partial_{y} \Gamma_{q} = -\int \partial_{y} \left(\frac{\partial_{y} \langle q \rangle}{\partial_{y} \langle \phi \rangle}\right) \Gamma_{E} \\ \frac{\partial \Omega}{\partial t} < 0 \Rightarrow \Gamma_{E} = \mu \partial_{y} \left(\frac{\partial_{y} \langle q \rangle}{\partial_{y} \langle \phi \rangle}\right) \qquad \Rightarrow \Gamma_{q} = \frac{1}{\partial_{y} \langle \phi \rangle} \partial_{y} \left(\frac{\partial_{y} \langle q \rangle}{\partial_{y} \langle \phi \rangle}\right) \\ \text{ parameter TBD } \langle \upsilon_{x} \rangle \qquad \Rightarrow \Gamma_{q} = \frac{1}{\partial_{y} \langle \phi \rangle} \partial_{y} \left(\frac{\mu \partial_{y} \left(\frac{\partial_{y} \langle q \rangle}{\partial_{y} \langle \phi \rangle}\right)\right) \\ \text{ fPV flue}$$

eneral form o PV flux

34

Structure of PV flux

 $\Gamma_{q} = \frac{1}{\langle v_{x} \rangle} \partial_{y} \left[\mu \partial_{y} \left(\frac{\partial_{y} \langle q \rangle}{\langle v_{x} \rangle} \right) \right] = \frac{1}{\langle v_{x} \rangle} \partial_{y} \left[\mu \left(\frac{\langle q \rangle \partial_{y} \langle q \rangle}{\langle v_{x} \rangle^{2}} + \frac{\partial_{y}^{2} \langle q \rangle}{\langle v_{x} \rangle} \right) \right]$

diffusion parameter calculated by pert urbation theory, numerics... diffusion and hyper diffusion of PV

<--> usual story : Fick's diffusion

PV staircase

relaxed state: homogenization of $\frac{\partial_y \langle q \rangle}{\langle p \rangle} \rightarrow$

PV gradient large where zonal flow large

 \rightarrow Zonal flows track the PV gradient \rightarrow PV staircase

- Highly structured profile of the staircase is reconciled with the homoge nization or mixing process required to produce it.
- Staircase may arise naturally as a consequence of minimum enstrophy relaxation.

Feedback Loops I

- Closing the loop of shearing and Reynolds work
- Spectral 'Predator-Prey' equations

Prey \rightarrow Drift waves, $\langle N \rangle$ $\frac{\partial}{\partial t} \langle N \rangle - \frac{\partial}{\partial k_r} D_k \frac{\partial}{\partial k_r} \langle N \rangle = \gamma_k \langle N \rangle - \frac{\Delta \omega_k}{N_0} \langle N \rangle^2$

Predator \rightarrow Zonal flow, $|\phi_q|^2$ $\frac{\partial}{\partial t} |\phi_q|^2 = \Gamma_q \left[\frac{\partial \langle N \rangle}{\partial k_r} \right] |\phi_q|^2 - \gamma_d |\phi_q|^2 - \gamma_{NL} [|\phi_q|^2] |\phi_q|^2$

Feedback Loops II

- Recovering the 'dual cascade':
 - _

 $Prey \rightarrow \langle N \rangle \sim \langle \Omega \rangle \Rightarrow \text{ induced diffusion to high } k_r \begin{bmatrix} \Rightarrow \text{Analogous} \rightarrow \text{ forward potential} \\ \text{enstrophy cascade; PV transport} \end{bmatrix}$

- Predator
$$\rightarrow |\phi_q|^2 \sim \langle V_{E,\theta}^2 \rangle$$
 \Rightarrow

growth of *n=0, m=0* Z.F. by turbulent Reynolds work Analogous \rightarrow inverse energy cascade

Mean Field Predator-Prey Model (P.D. et. al. '94, DI²H '05)

$$\frac{\partial}{\partial t}N = \gamma N - \alpha V^2 N - \Delta \omega N^2$$
$$\frac{\partial}{\partial t}V^2 = \alpha N V^2 - \gamma_d V^2 - \gamma_{NL} (V^2) V^2$$

State	No flow	Flow $(\alpha_2 = 0)$	Flow ($\alpha_2 \neq 0$)
N (drift wave turbulence level)	$\frac{\gamma}{\Delta\omega}$	$\frac{\gamma_d}{\alpha}$	$\frac{\gamma_{\rm d} + \alpha_2 \gamma \alpha^{-1}}{\alpha + \Delta \omega \alpha_2 \alpha^{-1}}$
V^2 (mean square flow)	0	$\frac{\gamma}{\alpha} - \frac{\Delta\omega\gamma_{\rm d}}{\alpha^2}$	$\frac{\gamma - \Delta \omega \gamma_{\rm d} \alpha^{-1}}{\alpha + \Delta \omega \alpha_2 \alpha^{-1}}$
Drive/excitation mechanism	Linear growth	Linear growth	Linear growth Nonlinear damping of flow
Regulation/inhibition mechanism	Self-interaction of turbulence	Random shearing, self-interaction	Random shearing, self-interaction
Branching ratio $\frac{V^2}{N}$	0	$\frac{\gamma - \Delta \omega \gamma_{\rm d} \alpha^{-1}}{\gamma_{\rm d}}$	$\frac{\gamma - \Delta \omega \gamma_{\rm d} \alpha^{-1}}{\gamma_{\rm d} + \alpha_2 \gamma \alpha^{-1}}$
Threshold (without noise)	$\gamma > 0$	$\gamma > \Delta \omega \gamma_{\rm d} \alpha^{-1}$	$\gamma > \Delta \omega \gamma_{\rm d} \alpha^{-1}$

System Status

IV) The Central Question: Secondary Pattern Selection ?!

- Two secondary structures suggested
 - Zonal flow → quasi-coherent, regulates transport via shearing
 - Avalanche → stochastic, induces extended transport events
- Both flux driven... by relaxation
- <u>Nature of co-existence??</u>
- Who wins? Does anybody win?

V) Staircases and Traffic Jams

Single Barrier \rightarrow Lattice of Shear Layers

→ Jam Patterns

Highlights

Observation of ExB staircases

 \rightarrow Failure of conventional theory

(emergence of particular scale???)

Model extension from Burgers to telegraph

 $\partial_t \delta T + \lambda \delta T \partial_x \delta T = \chi_2 \partial_x^2 \delta T$ $\Rightarrow \tau \partial_t^2 \delta T + \partial_t \delta T + \lambda \delta T \partial_x \delta T = \chi_2 \partial_x^2 \delta T$

finite response time \rightarrow like drivers' response time in traffic

Analysis of telegraph eqn. predicts heat flux jam

- scale of jam comparable to staircase step

Motivation: ExB staircase formation (1)

• ExB flows often observed to self-organize in magnetized plasmas

eg. mean sheared flows, zonal flows, ...

• `ExB staircase' is observed to form

(G. Dif-Pradalier, P.D. et al. Phys. Rev. E. '10)

- flux driven, full f simulation
- Quasi-regular pattern of shear layers and profile corrugations
- Region of the extent $\Delta \gg \Delta_c$ interspersed by temp. corrugation/ExB jets

 \rightarrow ExB staircases

- so-named after the analogy to PV staircases and atmospheric jets
- Step spacing → avalanche outer-scale

ExB Staircase (2)

• Important feature: co-existence of shear flows and avalanches

- Seem mutually exclusive ?!?
 - \rightarrow strong ExB shear prohibits transport
 - \rightarrow avalanches smooth out corrugations
- Can co-exist by separating regions into:
 - 1. avalanches of the size $\Delta\gg\Delta_c$
 - 2. localized strong corrugations + jets
- How understand the formation of ExB staircase???
 - What is process of self-organization linking avalanche scale to ExB step scale?

i.e. how explain the emergence of the step scale ???

Some Observations: <u>Staircases build up from the edge</u>

 \rightarrow staircases may not be related to zonal flow eigenfunctions

 \rightarrow How describe generation mechanism??

(GYSELA simulation)

<u>Corrugation points and rational surfaces</u> – no relation!

Step location not tied to magnetic geometry structure in a simple way

Towards a model

• How do we understand quasi-regular pattern of ExB staircase, generated from stochastic heat avalanche???

• An idea: jam of heat avalanche

corrugated profile ↔ ExB staircase

 \rightarrow corrugation of profile occurs by 'jam' of heat avalanche flux

* \rightarrow time delay between $Q[\delta T]$ and δT is crucial element

like drivers' response time in traffic

• How do we actually model heat avalanche 'jam'??? \rightarrow origin in dynamics?

 \rightarrow accumulation of heat increment \rightarrow stationary corrugated profile

Traffic jam dynamics: 'jamiton'

• A model for Traffic jam dynamics \rightarrow Whitham

$$egin{aligned} &
ho_t + (
ho v)_x = 0 \ &v_t + v v_x = -rac{1}{ au} \left\{ v - V(
ho) + rac{
u}{
ho}
ho_x
ight\} \end{aligned}$$

 \rightarrow Instability occurs when

 $\tau > \nu/({\rho_0^2 {V_0'}^2})$

$$D_{eff} =
u - au
ho_0^2 {V_0'}^2 < 0 \
e$$
clustering instability

- \rightarrow Indicative of jam formation
- Simulation of traffic jam formation

http://math.mit.edu/projects/traffic/

- \rightarrow Jamitons (Flynn, et.al., '08)
- n.b. I.V.P. \rightarrow decay study

Heat avalanche dynamics model (`the usual')

Hwa+Kardar '92, P.D. + Hahm '95, Carreras, et al. '96, ... GK simulation, ... Dif-Pradalier '10

- δT :deviation from marginal profile \rightarrow conserved order parameter
- Heat Balance Eq.: $\partial_t \delta T + \partial_x Q[\delta T] = 0 \rightarrow$ up to source and noise
- Heat Flux $Q[\delta T] \rightarrow$ utilize symmetry argument, ala' Ginzburg-Landau
 - Usual: → joint reflectional symmetry (Hwa+Kardar'92, Diamond+Hahm '95)

hyperdiffusion

lowest order \rightarrow Burgers equation

 $\partial_t \delta T + \lambda \delta T \partial_x \delta T = \chi_2 \partial_x^2 \delta T$

An extension of the heat avalanche dynamics

• An extension: a finite time of relaxation of Q toward SOC flux state

 $\partial_t Q = -\frac{1}{\tau} \left(Q - Q_0(\delta T) \right)$ $Q_0[\delta T] = rac{\lambda}{2} \delta T^2 - \chi_2 \partial_x \delta T + \chi_4 \partial_x^3 \delta T$ (Guyot-Krumhansl) \rightarrow In principle $\tau(\delta T, Q_0)$ \leftrightarrow large near criticality (\sim critical slowing down)

i.e. enforces time delay between δT and heat flux

N.B.: Contrast quasi-linear theory!

• Dynamics of heat avalanche:

n.b. model for heat evolution

 $\partial_t \delta T + \lambda \delta T \partial_x \delta T = \chi_2 \partial_x^2 \delta T - \chi_4 \partial_x^4 \delta T - \tau \partial_t^2 \delta T$

 \rightarrow Burgers (P.D. + T.S.H. '95)

New: finite response time

 \rightarrow Telegraph equation

diffusion \rightarrow Burgers \rightarrow Telegraph

Relaxation time: the idea

- What is ' τ ' physically? \rightarrow Learn from traffic jam dynamics
- A useful analogy:

	heat avalanche dynamics	traffic flow dynamics	
temp. deviation from marginal profile		local car density	
	heat flux	traffic flow	
	mean SOC flux (ala joint relflection symmetry)	equilibrium, steady traffic flow	
	heat flux relaxation time	driver's response time	

- driver's response can induce traffic jam

- jam in avalanche \rightarrow profile corrugation \rightarrow staircase?!?

- Key: instantaneous flux vs. mean flux

Analysis of heat avalanche dynamics via telegraph

- How do heat avalanches jam?
- Consider an initial avalanche, with amplitude δT_0 , propagating at the speed $v_0 = \lambda \delta T_0$

 \rightarrow turbulence model dependent

• Dynamics:

two characteristic propagation speeds

 \rightarrow In short response time (usual) heat flux wave propagates faster

→ In long response time, heat flux wave becomes slower and pulse starts overtaking. What happens???

Analysis of heat avalanche jam dynamics

- In large tau limit, what happens? → Heat flux jams!!
- Recall plasma response time akin to driver's response time in traffic dynamics
- negative heat conduction instability occurs (as in clustering instability in traffic jam dynamics)

$$\begin{array}{l} \partial_t \widetilde{\delta T} + v_0 \partial_x \widetilde{\delta T} = \chi_2 \partial_x^2 \widetilde{\delta T} - \chi_4 \partial_x^4 \widetilde{\delta T} - \tau \partial_t^2 \widetilde{\delta T} \\ \rightarrow (\chi_2 - v_0^2 \tau) \partial_x^2 \widetilde{\delta T} - \chi_4 \partial_x^4 \widetilde{\delta T} \\ \hline \\ < 0 \text{ when overtaking} \\ \rightarrow \text{clustering instability} \end{array}$$

n.b. akin to negative viscosity instability of ZF in DW turbulence

instead ZF as secondary mode in the gas of primary DW

→ Heat flux 'jamiton' as secondary mode in the gas of primary avalanches

Analysis of heat avalanche jam dynamics

• Growth rate of the jamiton instability

$$\gamma = -\frac{1}{2\tau} + \frac{1}{2\tau} \sqrt{\frac{r+1}{2} - 2\tau \chi_2 k^2 \left(1 + \frac{\chi_4 k^2}{\chi_2}\right)} \qquad r = \sqrt{\left\{4\tau \chi_2 k^2 \left(1 + \frac{\chi_4 k^2}{\chi_2}\right) - 1\right\}^2 + 16v_0^2 k^2 \tau^2 k^2 \left(1 + \frac{\chi_4 k^2}{\chi_2}\right)} = \frac{1}{2\tau} \left(1 + \frac{\chi_4 k^2}{\chi_2}\right) - \frac{1}{2\tau} \left(1$$

- Threshold for instability
 - $\tau > \frac{\chi_2}{v_0^2} \left(1 + \frac{\chi_4 k^2}{\chi_2} \right)$

n.b. $1/ au = 1/ au[\mathcal{E}]$ \rightarrow clustering instability strongest near criticality

 \rightarrow critical minimal delay time

• Scale for maximum growth

$$k^{2} \cong \frac{\chi_{2}}{\chi_{4}} \sqrt{\frac{\chi_{4}v_{0}^{2}}{4\chi_{2}^{3}}} \qquad \text{from} \qquad \frac{\partial\gamma}{\partial k^{2}} = 0 \implies 8\tau \frac{\chi_{4}^{2}}{\chi_{2}}k^{6} + 4\tau\chi_{4}k^{4} + 2\frac{\chi_{4}}{\chi_{2}}k^{2} + 1 - \frac{v_{0}^{2}\tau}{\chi_{2}} = 0$$

$$\Rightarrow \text{staircase size,} \qquad \Delta_{atom}^{2}(\delta T) \neq \delta T \qquad \text{from saturation: consider shearing}$$

ze,
$$\Delta^2_{stair}(\delta T)$$
 , δT from saturation: consider shearing

Scaling of characteristic jam scale

• Saturation: Shearing strength to suppress clustering instability

Jam growth \rightarrow profile corrugation \rightarrow ExB staircase \rightarrow $v'_{E \times B}$ \uparrow \rightarrow estimate, only

- ightarrow saturated amplitude: $\frac{\delta T}{T_i} \sim \frac{1}{v_{thi}
 ho_i} \sqrt{\frac{\chi_4}{\tau}}$
- Characteristic scale

$$\Delta^2 \sim k^{-2}(\delta T) \sim \frac{2v_{thi}}{\lambda T_i} \rho_i \sqrt{\chi_2 \tau} \qquad \chi_2 \sim \chi_{neo}$$

- Geometric mean of ho_i and $\sqrt{\chi_2 au}$: ambient diffusion length in 1 relaxation time
- 'standard' parameters: $\Delta \sim 10 \Delta_c$

Jam growth qualitatively consistent with staircase formation

Dif-Pradalier '13 caveat: based on model with compressional waves

Direct exp. characterisation difficult:

flows, profiles & gradients

Shear layers in staircase:

- eddies stretched, tilted, fragmented
- predict quasi-periodic decorrelation turbulent fluct.

$$\mathcal{C}_{\phi}(r, heta, t, \delta r) = rac{\langle ilde{\phi}(r, heta, t) \, ilde{\phi}(r + \delta r, heta, t)
angle_{ au}}{\left[\langle ilde{\phi}(r, heta, t)^2
angle_{ au} \, \langle ilde{\phi}(r + \delta r, heta, t)^2
angle_{ au}
ight]^{1/2}}$$

•
$$C_{\phi} = 1/2$$
 when $\delta r = L_c$

t

testable with fast-sweeping reflectometry

Moderate fluctuation level & MHD-free plasmas: optimal for staircase observation

fast-sweeping reflectometry on Tore Supra [Clairet RSI 10, Hornung PPCF 13]

- → localised measure, fast (~ μ s), sweeping in X-mode : full radial profile δn
- rightarrow routinely estimate L_c

- Large set: 179 staircase steps, so far [Dif-Pradalier PRL 15 & Hornung, in prep.]
 - quasi-regularly spaced radial local minima of L_c
 - reproducible: not random & robust w.r.t. definition of L_c
 - tilt consistent with flow shear around minima
 - no correlation to local q rationals in rules MHD out
 - consistent width [~ $10\rho_i$] & spacing [meso.] of local L_c minima

When theoretical predictions lead to experimental discovery

- flow width $\delta \sim 11 \rho_i$ consistent with GYSELA obs. & ZF measurements [Fujisawa PRL 04]
- ► turbulence-borne I not MHD [Dif-Pradalier PRL 15 & Hornung, in prep.]

Summary

• A model for ExB staircase formation

- Heat avalanche jam \rightarrow profile corrugation \rightarrow ExB staircase
- model developed based on analogy to traffic dynamics \rightarrow telegraph eqn.

• Analysis of heat flux jam dynamics

- Negative conduction instability as onset of jam formation
- Growth rate, threshold, scale for maximal growth
- Qualitative estimate: scale for maximal growth $\Delta \sim 10 \Delta_c$

 \rightarrow comparable to staircase step size

Ongoing Work

- This analysis ↔ set in context of heat transport
- Implications for momentum transport? →
 - consider system of flow, wave population, wave momentum flux
 - time delay set by decay of wave population correlation due ray stochastization \rightarrow elasticity
 - flux limited PV transport allows closure of system

Results:

- Propagating (radially) zonal shear waves predicted, as well as vortex mode
- For τ_{deby} larger, Z.F. state transitions to LCO, rather than fixed point
- τ_{deby} due elastization necessarily impacts dynamics of L \rightarrow I \rightarrow H transition

Some Relevant Publications

- Y. Kosuga, P.H. Diamond, O.D. Gurcan; Phys. Rev. Lett. 110, 105002 (2013)
- O.D. Gurcan, P.H. Diamond, et al, Phys. Plasmas 20, 022307 (2013)
- Y. Kosuga, P.H. Diamond, Phys. Plasmas (2014)
- Y. Kosuga: Invited Talk, 2013 APS-DPP Meeting
- Z.B. Guo, P.H. Diamond, et al; Phys. Rev. E, in press (2014)
- Z.B. Guo, P.H. Diamond; Phys. Plasmas (2014)
- G. Dif-Pradalier, Phys. Rev. E (2010, Phys. Rev. Lett. (2015)
- P.-C. Hsu, P.H. Diamond, PoP, Phys Rev. E (2015)