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A Simpler(?!) Problem:
- Turbulent Pipe Flow



« Essence of confinement:

— given device, sources; what profile is achieved?
- g =W/Py

« Related problem: Pipe flow (turbulent)

AP - pressure drop

) O

[

1004

APra? = pV,?2mal

Balance: momentum transport to wall Re

(Reynolds stress) vs AP
_ 2aAP/l

=> Flow profile A= 1/2pu?




(Core)

u
inertial sublayer - logarithmic (~ universal)
—> viscous sublayer (linear)
0 - Problem: physics of ~
universal logarithmic profile?

Wall

« Prandtl Mixing Length Theory (1932)

— Wall stress = pV,2 = —pvy ou /ox

N
eddy viscosity

— Absence of characteristic scale =

vy ~ Vx { x = mixing length, distance from wall
u ~ V.In(x/x,) Analogy with kinetic theory ...

Vr =V = X, Viscous layer 2 x, = v/l



Some key elements:

Momentum flux driven process
Turbulent diffusion model of transport eddy viscosity
Mixing length:
~ X > macroscopic, eddys span system
> ~ flat profile
Self-similarity in radius

Cut-off when vy = v

Reduce drag by creation of buffer layer i.e. steeper gradient than

inertial sublayer (by polymer)



Aside: FYI| — Historical Note

——> Collective Dynamics of Turbulent Eddy
— ‘Aether’ | — First Quasi-Particle Model of Transport?!

— Kelvin, 1887

XLV. On the Pr;pagatiorz of Laminar Motion through a tur-
bulently moving Inviscid Liquid. By Sir WiLLiAM THOMSON,
LL.D., F.R.S8.*

1. IN endeavouring to investigate turbulent motion of water
between two fixed planes, for a promised communication
to Secfion A of the British Association at its coming Meeting
in Manchester, I have found something seemingly towards a
solution (many times tried for within %he last twenty years)
of the problem to construct, by giving vortex motion to an
incompressible inviscid Huid, a medium which shall transmt
waves of laminar motion as the luminiierous @ther transmits
waves of hight.
2. Let the fluid be unbounded on all sides, and let u, v, w
be the velocity-components, and p the pressure at (z, v, 2, ¢).
We have

du dv dw

* Communicated by the Author, having been read before Section A of
the British Association at its recent Meeting in Manchester.

0 . . . . . (D),



21. Eliminating the first member fiom this equation, by

(34), we find &2 72
(Ttﬂ,f:gR?(‘E{ 5]

R? ~ (Vv 2) Thus we have the very remarkable result that laminar dis-
turbance is propagated according to the well-known mode of
waves of distortion in a homogeneous elastic solid ; and

that the velocity of propagation is -“%%R, or about *47 of the
average velocity of the turbulent motion of the fluid.

Fig. 1.

— time delay between
Reynolds stress and -
wave shear introduced

‘__l".___o
I

R

|
|
|

— converts diffusion equation i '] | ﬁ
to wave equation T J 1,;’ | I
— describes wave in ensemble * |
. : . E : Q
of vortex quasi-particles ﬁ JB 1 ﬂ A
— c.f. “Worlds of Flow”, O. Darrigol E ‘ U D L




I[I) The System:
What is a Tokamak?

How does confinement work?

N.B. No programmatic advertising intended...



Magnetically confined plasma

* Nuclear fusion: option for generating large
amounts of carbon-free energy

* Challenge: ignition -- reaction release more energy
than the input energy

Lawson criterion:
nTeT; > 3x10*'m3skeV.

- confinement
- turbulent transport

e Turbulence: instabilities and collective oscillations

- lowest frequency modes dominate the
transport

- drift wave



Primer on Turbulence in Tokamaks I

Strongly magnetized

— Quasi 2D cells

— Localized by k-B=0 (resonance)

b V)J_=+ EXZA

W a

« VT,, VT;, Vn driven

» Akin to thermal Rossby wave, with: g = magnetic curvature

» Resembles wave turbulence, not high Re Navier-Stokes turbulence
* Reill defined, "Re' < 100

e , K~Vt./A~1 >Kubo#=~1

* Broad dynamic range



Primer on Turbulence in Tokamaks II

« Characteristic scale ~ few p; = "mixing

length”

« Characteristic velocity v; ~ p.cg

» Transport scaling: D ~ pvy ~ p,Dg ~ Dgg, Dp ~ psCs

2 scales: : : : , .
« i.e. Bigger is better! = sets profile scale via heat

balance (Why ITER is huge...)

p = gyro-radius

a = cross-section

p. = p/a <> key ratio « Reality: D ~p%Dp, a <1 = why??

2 Scales, p, « 1 = key contrast to pipe flow



Drift wave model — Fundamental prototype

ol

Hasegawa-Wakatani : simplest model incorporating instability
V:%fwir/p

J, 50 Slvorticity:  p; %Vz(ﬁ =—D\V(p—n)+W*V’¢

Jo=nlelV,,  1,=-Vi#+Vp,
N
V. -J +V
an, + Vi =0 >|density:
dt -n, |e|

- PV conservation in inviscid theory
—> PV flux = particle flux + vorticity flux

- zonal flow being a counterpart of particle flux

* Hasegawa-Mima ( DHkﬁ/a)>>1 —> n~¢ )

%n :—D‘|Vﬁ(¢—n)+DOV2n

(9= pIV9)+0.0,9=0

d >
E(n—v ¢)=O

QL:

>?

()=~ (0,5)

S\ o

2(V9)= ar2< v’é)
=—;?<ﬁ,ﬁ9>

14



III) Patterns in Tokamak
Turbulence

- Non-locality and Avalanches
-> Zonal Flows



= “Truth is never pure and rarely simple” (Oscar Wilde)
Transport: Local or Non-local?

» 40 years of fusion plasma modeling
— local, diffusive transport

Q=—nmx(MHVT, x<>Dgy

Time (au)

* 1995 — increasing evidence for:
— transport by avalanches, as in sand pile/SOCs

— turbulence propagation and invasion fronts T T R
- “non-locality of transport” . Radius: r/p, |
X «ExB staircase» width

e o Avalanche size

0= —J' xk(r,¥yHYNT(rdr' 1 z '
k(r,r¥) ~ S, /[(r -+ AZ] 1 i /M H

Kernel width: A/p,
o

* Physics:
. i [-=- o Kernel width: A/ p,]|
- Levy flights, SOC, turbulence fronts... ]
turb. autocorrelation |
* FUSion: st length: (c/p| o ¢ H
. T —— —& _________ Q@ -ose s S ee e *
— gyro-Bohm breaking I , .
128 256 512
1./9a

(ITER: significant p. extension)
— fundamentals of turbulent transport modeling?? Guilhem Dif-Pradalier et al. PRL 2009



Observe:

« Cells “pinned” by magnetic geometry - resonances

TABLE I. Analogies between the sandpile transport model and a turbulent transport model.

¢ Re ma rka b I e Turbulent transport in toroidal

plasmas

Sandpile model

Sl m | I arlty Localized fluctuation (eddy)

Local turbulence mechanism:
Critical gradient for local instability
Local eddy-induced transport
Total energy/particle content

Heating noise/background fluctuations

Energy/particle flux

Mean temperature/density profiles
| Transport event

Sheared electric field

Grid site (cell)
Automata rules:
Critical sandpile slope (Z ;)

Number of grains moved if unstable (N,)
Total number of grains (total mass)

Random rain of grains
Sand flux
Average slope of sandpile
I Avalanche |
Sheared flow (sheared wind)

; !
Automaton toppling " and can cooperate!
< Cell/eddy overturning
9 AvalanCheS happen! FIG. 1. A cartoon representation of the simple cellular automata rules used

to model the sandpile.



‘Avalanches’ form! — flux drive + geometrical ‘pinning’

10
107 — —rr————rrr——
. ‘-..-.,-,.._ﬂ‘ " i 47K ]
10° o’ \‘rfw@g R < E 0.1} -
£ W Thod i o~
107 I '“\\’ =] 0.01 } 1
- <
g8 10 ~ 0001} :
= < 0.0001 _ «
s 1e'05 1 2MW i g(" 1
10* 1-06 | 4AMW - , "_;,l ‘
1000 o " ] jeoy L0 o SR W
0.0001 0.001 0.01 0.1 0.01 0.1 1 10
freq WRyvy
Newman PoP96 (sandpile) . GK simulation also exhibits avalanching
(Autopower frequency spectrum of ‘flip) (Heat Flux Spectrum) (Idomura NF09)

Avalanching is a likely cause of ‘gyro-Bohm breaking’ = Intermittent Bursts
=» localized cells self-organize to form transient, extended transport events
Akin domino toppling:

Pattern competition Toppling front can
penetrate beyond region

with shear flows! of local stability




Shear Flows !?

How is transport suppressed?
=» shear decorrelation!

Back to sandpile model:

Closed end
2D pile +
sheared flow of .
@ = grains i
Shearing flow
decorrelates
Toppling sequence g
Open End

FIG. 10. A cartoon of the sandpile with a shear flow zone. The whole pile 1s
flowing to the right at the top and to the left at the bottom connected by a
variable sized region of sheared flow.

(b) time —————»=

FIG. 11. Time evolution of the overtuming sites (like Fig. 4). The ava-

Lanches do not sppest comimons 1 ame becance only wery S0 sme sp . AVAlANChE coherence destroyed by shear flow
shown. (a) The shear-free case shows avalanches of all lengths over the

entire radius. (b) The case with sheared flow shows the coherent avalanches

being decorrelated in the shear zone in the middle of the pile.



* Implications:

shear

dh/dx

Spectrum of Avalanches

10°
10° L

107 &

10° g
10° o
10° -

FIG. 14. The slopes of a sandpile with a shear region in the middle, includ-
mng all the shear effects (diamonds) and just the transport decorrelation and
the linear effect (circles).

S(E)

](xm i 1 dtiaial " 1
0.0001 0.001 0.01 0.1
Frequency

- N.B.
.- Profile steepens for unchanged toppling

1

rules

- ictri 1 FIG. 11. Ti rolution of the overtuming sites (like Fig. 4). The ava-
Distribution of avalanches fundamental XL 11, Duwouliucol s ot ot 0y Eig 9 e o

shown. (a) The shear-free case shows avalanches of all lengths over the
entire radius. (b) The case with sheared flow shows the coherent avalanches
being decorrelated in the shear zone in the middle of the pile.




Shear Flows ‘Natural’ to Tokamaks

« Zonal Flows Ubiquitous for:

~ 2D fluids / plasmas R, <1
Rotation (), Magnetization B, Stratification

Ex: MFE devices, giant planets, stars...

21



Heuristics of Zonal Flows a): How Form?
Simple Example: Zonally Averaged Mid-Latitude Circulation

» classic GFD example: Rossby waves + Zonal flow
(c.f. Vallis '07, Held '01)

» Key Physics:

e Rossby Wave:
energy radiation

oy e SR W 4 _ _ Pk
divergence s (V) — =z
| TRt e ~ z ‘r kJ_
Stiing = M, >
e~~~ - 2 kyk ~ 12
— y 5 o5\ — — -
ESE Y LG e ihats
break & dissipate “"‘;"0‘"’9" i 1
4
g |
“ VgyVpny < 0 —> Backward wave!

or veloCty

momentum | = Momentum convergence

convergence at stirring location




» ..."“the central result that a rapidly rotating flow, when stirred
in a localized region, will converge angular momentum into
this region.” (l. Held, '01)

» Outgoing waves = incoming wave momentum fiux

§

viscous damping i

</ zonal
X X X X source . shear layer
formation

<\
/ viscous damping
» Local Flow Direction (northern hemisphere):
» eastward in source region
» westward in sink region
» sethby >0

» Some similarity to spinodal decomposition phenomena
- Both ‘negative diffusion’ phenomena



Wave-Flows in Plasmas

MFE perspective on Wave Transport in DW Turbulence
* localized source/instability drive intrinsic to drift wave structure

— couple to damping < outgoing wave

X .
X Emission Absorption
X A e
- L m I
X x>0 = v, >0
X — Vg =_2ps2 kgkzrv*z 2
=0 (ke p) <0 = kk,>0
radial structure (Vo ) = —% |4, > Kk, <0

» outgoing wave energy flux — incoming wave momentum flux
— counter flow spin-up!
v, 4\

« zonal flow layers form at excitation regions

24



Zonal Flows |

 What is a Zonal Flow?
— n = 0 potential mode; m = 0 (ZFZF), with possible sideband (GAM)

— toroidally, poloidally symmetric ExB shear flow

« Why are Z.F.'s important?

— Zonal flows are secondary (nonlinearly driven):
* modes of minimal inertia (Hasegawa et. al.; Sagdeey, et. al. ‘78)
* modes of minimal damping (Rosenbluth, Hinton ‘98)

 drive zero transport (n = 0)

— natural predators to feed off and retain energy released by

gradient-driven microturbulence



PV conservation

PV conservation dq/dt=0

GFD:
Quasi-geostrophic system

Plasma:
Hasegawa-Wakatani system

2
q=Vy+py
relative planetary
vorticity vorticity

q=n-V'¢
/N
density ion vorticity

(guiding center) (polarization)

Physics: Ay —> A(V2 l//)

Physics: Ar — An — A(qui):!

Charney-Haswgawa-Mima equation

n=n,+n

. e

n~_¢
T

H-W > H-M:

Q-G:

10
., Ot

0

21O P 2 4\
—(V¢-p9) La¢+L J($,V$)=0

n

0
—(Vw—L )+ —w + J(w,Vy)=0
ar( w—L; ) poov + I V)

26



Zonal Flows 11

* Fundamental Idea:

— Potential vorticity transport + 1 direction of translation symmetry
— Zonal flow in magnetized plasma / QG fluid

— Kelvin’s theorem is ultimate foundation

» G.C. ambipolarity breaking — polarization charge flux — Reynolds force

— Polarization charge mmp - pzbz _I”l () —n(f) !

polarization length scale J ion GC L electron density

— S0 [, =T, mmp p2<\’7rEVi$>¢0 4==) PV transport’
L polarization flux — What sets cross-phase?
— If 1 direction of symmetry (or near symmetry):

—pP <erVJ_¢>_ —0 < rEvJ_E> (Taylor, 1919)
—0,(v.;v,,) mmp Reynolds force mmp Flow



Zonal Flows Shear Eddys |

» Coherent shearing: (Kelvin, G.I. Taylor, Dupree’66, BDT90)

— radial scattering + (V) — hybrid decorrelation

> _> >
- kD, — (k <VE>'2 D, /3)" =1/z, O O ﬂ /

— shaping, flux compression: Hahm, Burrell '94 = * - <

>
Time

« Other shearing effects (linear): Response shift
and dispersion =g

— spatial resonance dispersion: @ —kyv, = @ — kv, —k,(V,.)'(r —r,)
— differential response rotation — especially for kinetic curvature effects

— N.B. Caveat: Modes can adjust to weaken effect of external shear

(Carreras, et. al. ‘92; Scott ‘92)



Shearing 11

« Zonal Shears: Wave kinetics (Zakharov et. al.; P.D. et. al. ‘98, et. seq.)
Coherent interaction approach (L. Chen et. al.)

« dk,/dt =—0(w+kyVy)/Or; VE:<VE>+VE A

Mean k= kO _fp ¥ 4 vy
shearing """~ "7 oV E? / » LA !H‘“F\MM |
Zonal <5kr2> =D, 7 / _\ x
Random 1
shearing D, = Zk;‘VE',q Ty — Wave ray chaos (not shear RPA)

q

underlies D, — induced diffusion

 Mean Field Wave Kinetics — Induces wave packet dispersion

ON - — 0 ON
= 1 Ve + V)'VN_E(G)_FICQVE) v 7:N—C{N} - Applicable to ZFs and GAMs

0 0 0
=2 ()2 Dy () =)= ()

L Zonal shearing




Shearing 111

Energetics: Books Balance for Reynolds Stress-Driven Flows!
Fluctuation Energy Evolution — Z.F. shearing

d =2k kV.p!

-~ (O 0 0 0 -
dkw| —(NY——D,—(N) |= =(&)=—[dkV, (k)D.,— (N} V, =
I w(@t< > akr k akr< >j:> at <8> J. gr( ) k 6kr< > 8gr (1+kip52)2

Point: For d(Q)/dk, <0, Z.F. shearing damps wave energy

Fate of the Energy: Reynolds work on Zonal Flow
Modulational 9.9V + 5(5<VVV9>)/ Or =—yoV,

Instability . k k. 8O N.B.: Wave decorrelation essential:
5<VrVe> ~ = Equivalent to PV transport
- (+kipy) (c.f. Gurcan et. al. 2010)
Bottom Line: o -

— Z.F. growth due to shearing of waves
— “Reynolds work” and “flow shearing” as relabeling — books balance

— Z.F. damping emerges as critical; MNR ‘97



Non-perturbative approaches

— PV mixing in space is essential in ZF generation.
Taylor identity: <DyV2&> =—0, <z~)yﬁx>

vorticity flux Reynolds force

Key:
How represent

General structure of PV flux?

—relaxation principles!

non-perturb model 1: use selective decay principle

ZF: ..
most treatment of ZF What form must the PV flux have so as to dissipate

-- perturbation theory enstrophy while conserving energy?
-- modulational instability

(test shear + gas of waves) non-perturb model 2: use joint reflection symmetry

~ linear theor
Y What form must the PV flux have so as to

-> physics of evolved PV mixing? satisfy the joint reflection symmetry principle
-> something more general? for PV transport/mixing?

31



General principle: selective decay

* 2D turbulence conservation of N\

energy and potential enstrophy ALY

> dual cascade ~ inverse energy
cascading

- Minimum enstrophy state E(k)

U= ()Y

e eddy turnover rate and Rossby

forward enstrophy
‘:ading

|
|
|
|
|

I
|
. ” ”eddy" |
wave frequency mismatch are s A .
|
comparable |
a_a) +u-Vo+pv=0 i
ot :
i ‘ Rhines s ﬁ
LT cale
U forcing
= Rhines scale L, ~,[— k[|k
ﬂ wave wave

»

zonal flow



Using selective decay for flux

minimum enstrophy Taylor relaxation
relaxation (J.B. Taylor, 1974)
(Bretherton & Haidvogel 1976)
turbulence 2D hydro 3D MHD
delisenes q‘uantlty total kinetic energy global magnetic helicity
dual casc (constraint)
ade dissipated quantity fluctuation potential .
L magnetic energy
(minimized) enstrophy
_ minimum enstrophy state Taylor state
final state
flow structure emergent force free B field configuration
0 0
structural approach 8_Q<O:>FE =T, 8_EM <0=T,
t t

* flux? what can be said about dynamics?

—> structural approach (this work): What form must the PV flux have so as to
dissipate enstrophy while conserving energy?

General principle based on general physical ideas = useful for dynamical model 23



PV flux
- PV conservation

8( >+8< q> v082<q>

mean field PV: ot
Fq mean field PV flux

selective decay

—> energy conserved

o [2)

2
OF __ =
& war=-lopr,  =r-2

- enstrophy minimized Q= J‘%
0
==-[(ar,=-la ayEZi“
0 NERO) :
E<O:>F ,u@y} :>Fq ay<¢>ay|:ﬂay(
parameterlFBD <Ux>

Key Point: what form does PV fl
ux have s/t dissipate enstrophy,
conserve energy

general form o
f PV flux

34



Structure of PV flux

\

2
J \

(v,)

1 M}L H<q>ay<q>+ai<q>
Lo <Ux>ay{/ay[<%>] <Ux>6yﬂ (v,) )

diffusion parameter calculated by pert
urbation theory, numerics...

relaxed state:
9,(q

(v,)

Homogenization of

allows staircase

4 a

{0

0,{a)

2> 1, : zonal flow growth L

L<d, : zonal flow damping
(hyper viscosity-dominﬂted)

characteristicscale /¢ =

c =

diffusion and hyper diffusion of PV

<--> usual story : Fick’s diffusion

N

O T
Rhines scale LR~\/%

2>L,
0L,

~

: wave-dominat

: eddy-dominate/

35



PV staircase

0 PV gradient large
relaxed state: homogenization of ﬁ - hg Ll & |
Ux> where zonal flow large

- Zonal flows track the PV gradient - PV staircase

()

L,

* Highly structured profile of the staircase is reconciled with the homoge
nization or mixing process required to produce it.

* Staircase may arise naturally as a consequence of minimum enstrophy
relaxation.

36



Feedback Loops I

* Closing the loop of shearing and Reynolds work |collisional

flow damping ‘“”’RESS

—_——

Nonlinear
flow damping

Zonal flows

SUPPRESS * *I)RI\' g
b

Inhomoge- Drift wave
neity turbulence

DRIVE

» Spectral ‘Predator-Prey’ equations

Prey — Drift waves, <N>

o o 0 A®, |2
2 (NY=-2 D, 2 (N} = (W) - %
o N~ e, (Nh=7N) =T BN

7

Predator — Zonal flow, |¢,|?

0 2 8<N> 2 _ 2 _ 2 2
5|¢q|_r{—8kr}|¢q| Va6, 7l 4, P14,




Feedback Loops 11

Recovering the ‘dual cascade’:

— Prey — <N>~ <Q> = induced diffusion to high k, {

— Predator — |¢q |2~ <VEZ,9> {

Mean Field Predator-Prey Model
(P.D. et. al. ’94, DI?H ‘05)

%Nz;/N—aVzN—Aa)NZ

e N (e

= Analogous — forward potential

enstrophy cascade; PV transport

= Analogous — inverse energy cascade

System Status

= growth of n=0, m=0 Z.F. by turbulent Reynolds work

State No flow Flow (a2 = 0) Flow (a2 # 0)
-1
_— v +aya
N (drift wave L yd Y taoye
O a a + Awara™!
turbulence level)

Aw y — Awyga™!
V2 (mean square 0 ¥ .20 Y~ a@ysd |
a a” o+ Awara~!

flow)
Drive/excitation
mechanism

Regulation/inhibition
mechanism

Branching ratio ‘T

Threshold (without noise)

Linear growth

Self-interaction
of turbulence

0

y>0

Linear growth

Random shearing,

self-interaction
1

Linear growth

Nonlinear
damping
of flow

Random shearing,
self-interaction

1

Yy — Awyga™ y — Awyga™
¥d vd +arya~!
y > Awyga™! y > Awyga™!




IV) The Central Question: Secondary Pattern Selection ?!

« Two secondary structures suggested

— Zonal flow - quasi-coherent, regulates transport via

shearing

— Avalanche - stochastic, induces extended transport

events
« Both flux driven... by relaxation

 Nature of co-existence??

« Who wins? Does anybody win?



V) Staircases and
Traffic Jams

Single Barrier - Lattice of Shear Layers

- Jam Patterns



Highlights

Observation of ExB staircases

- Failure of conventional theory

Turbulence drive: RL,

(emergence of particular scale???)

120

100 140 1
Normalized radius: r/p,

Model extension from Burgers to telegraph
06T 4+ NT 00T = x2020T

= QOFOD+ 80T + NOT, T = x2026T

finite response time = like drivers’ response time in traffic

Jamitons in Traffic Flow 13405 @

Analysis of telegraph eqn. predicts heat flux jam

- scale of jam comparable to staircase step

]




Motivation: ExB staircase formation (1)

* ExB flows often observed to self-organize in magnetized plasmas

e 'ExB staircase’ is observed to form

GYSELA

L s

Turbulence drive: R,

ot

eg. mean sheared flows, zonal flows, ...

“ExB stawcase

\ N
of shear flows ‘ p‘-A—” \ \
l f \/ )

-~ 100 e 150 180

Nocmahsed radius rip,

Atmospheric Jets

(from Dunkerton et al. 2008]

(G. Dif-Pradalier, P.D. et al. Phys. Rev. E. '10)
flux driven, full f simulation

Quasi-regular pattern of shear layers
and profile corrugations

Region of the extent A > A,
interspersed by temp. corrugation/ExB jets

- ExB staircases

so-named after the analogy to PV staircases
and atmospheric jets

Step spacing = avalanche outer-scale



ExB Staircase (2)

e Important feature: co-existence of shear flows and avalanches

256 - Seem mutually exclusive ?1?
- 0.05

«—> | -> strong ExB shear prohibits transport

- avalanches smooth out corrugations

- Can co-exist by separating regions into:

Turbulence drive: R,

1. avalanches of the size A > A,

80 100 120 140 160 180 2. localized strong corrugations + jets
Normalized radius: r/p,

e How understand the formation of ExB staircase???

- What is process of self-organization linking avalanche scale to ExB step scale?

i.e. how explain the emergence of the step scale ???



Some Observations:
Staircases build up from the edge

2800

2100 TN EERE - staircases may not be related to zonal
flow eigenfunctions

e S Eop-. 4 —-> How describe generation mechanism??

S

Time x a/c

(GYSELA simulation)

0.2 0.4 0.6 0.8 1.0
Normalised radius p



Corrugation points and rational surfaces — no relation!

Time x a/c

2800
- I I I I
= GYSELA
o p. = 1/300
+ TS#45511
S 10+ .
3
e
2100 Q -TI'
(@)}
S
E S
()
)
1400 =
% ZO 0 | 1 1
0.2 0.4 0.6 0.8 1.0
Normalised radius p
700 . . .
Step location not tied to magnetic
geometry structure in a simple way
E x =
0 =
1

0.2 0.4 0.6 0.8
Normalised radius p



Towards a model

e How do we understand quasi-regular pattern of ExB staircase, generated from stochastic
heat avalanche???

e Anidea: jam of heat avalanche

corrugated profile «> ExB staircase X

- accumulation of heat increment
—> corrugation of profile occurs by —> stationary corrugated profile
‘jam’ of heat avalanche flux

% —> time delay betweenQ[éT"]and §T
is crucial element

like drivers’ response time in traffic

e How do we actually model heat avalanche ‘jam’ ??? - origin in dynamics?



Traffic jam dynamics: ‘jamiton’

e A model for Traffic jam dynamics - Whitham

pe + =0 |
e+ () P - cardensity
_ 1 174 v
Vt + VU = —r v — (P) + ;Pm v - traffic flow velocity
V(p) - =p
- Instability occurs when rs V/(pSVO'Q) p 2 —» an equilibrium traffic flow
Dejf =v — TPE?)VOﬂ < 0 - clustering instability T > driver’ sresponse time

- Indicative of jam formation

e Simulation of traffic jam formation

Jamitons in Traffic Flow t=340s [—simutation] http://math.mit.edu/projects/traffic/

[Ltheony |

- Jamitons (Flynn, et.al., " 08)

n.b. LV.P. = decay study

e
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Heat avalanche dynamics model ("the usual’)

Hwa+Kardar ’ 92, P.D. + Hahm ’ 95, Carreras, et al. 96, ... GK simulation, ... Dif-Pradalier 10

¢ §T :deviation from marginal profile - conserved order parameter

e Heat Balance Eq.: 8,67 + 8,Q[d7] =0 - up to source and noise

e Heat Flux Q[éT7 - utilize symmetry argument, ala’ Ginzburg-Landau

- Usual: = joint reflectional symmetry (Hwa+Kardar’92, Diamond+Hahm ’95)
Q = Qo(6T)
- 5T +» —8T -
= —6T2% — x20,6T + x4026T
\ X <> —X 2

hyperdiffusion

lowest order - Burgers equation OOT + ANOT 00T = xgaiéT



An extension of the heat avalanche dynamics

e An extension: a finite time of relaxation of @ toward SOC flux state

1 A
Q= 7 (Q — Qo(8T)) Qo[6T] = §5T2 — X2020T + x4026T
(Guyot-Krumhansl)

- Inprinciple  7(67,Qo) <> large near criticality (~ critical slowing down)

i.e. enforces time delay between 67" and heat flux

N.B.: Contrast quasi-linear theory!

» Dynamics of heat avalanche: n.b. model for heat evolution

OWOT + NOT 00T = x2820T — x4026T — TO26T diffusion - Burgers - Telegraph

-> Burgers 1

(P.D. + T.S.H. " 95) o ,
New: finite response time

- Telegraph equation



Relaxation time: the idea

e What is ‘7 ' physically? — Learn from traffic jam dynamics

e A useful analogy:

heat avalanche dynamics traffic flow dynamics
temp. deviation from marginal profile local car density
heat flux traffic flow
mean SOC flux (ala joint relflection equilibrium, steady traffic flow
symmetry)
- heat flux relaxation time driver’s response time

- driver’s response can induce traffic jam
- jam in avalanche = profile corrugation = staircase?!?

- Key: instantaneous flux vs. mean flux



Analysis of heat avalanche dynamics via telegraph

* How do heat avalanches jam? 6Ty

¢ Consider an initial avalanche, > v
with amplitude 675,
propagating at the speed vy = AdTy

- turbulence model dependent
e Dynamics:
OOT + v90y0T = x2026T — x40%6T — T7O26T
X2
oulse \ \/ ‘Heat flux wave’: -
telegraph - wavy feature
two characteristic propagation speeds

- In short response time (usual) heat

/\_) /\/\/\_) flux wave propagates faster

v - In long response time, heat flux wave
0 becomes slower and pulse starts overtaking.
What happens???

>0
N



Analysis of heat avalanche jam dynamics

e In large tau limit, what happens? - Heat flux jams!!
e Recall plasma response time akin to driver’s response time in traffic dynamics

* negative heat conduction instability occurs (as in clustering instability in traffic jam dynamics)

6tg\i“ + voaxﬁ — xzagﬁ’ _ X4ag§w _ Ta?giv Jamitons in Traffic Flow t=340s
= (x2 — v§T)920T — X4036T

<0 when overtaking

- clustering instability —— R

0 km 1km 2km 3km Akm

n.b. akin to negative viscosity instability of ZF in DW turbulence

instead ZF as secondary mode in the gas of primary DW

=>» Heat flux ‘jamiton’ as secondary mode in the gas of primary avalanches



Analysis of heat avalanche jam dynamics

e Growth rate of the jamiton instability

2 2 2
S A (1 L ) r = \/{4TX2k2 (1 + X ) - 1} T 1603k2r2
T T X2 2

e Threshold for instability

X2 Xak? nb. 1/7=1/7[€]
T> 5 1+ . . T
Vg X2 - clustering instability strongest near criticality

- critical minimal delay time

e Scale for maximum growth

/ 2
~ X2 [X4V( O 2 2
k? = 22 f 2l X416 4 X4 ;.2 voT
3 rom — =0 = 8=k 4 k 2=—k 1——=0
X4\ Ok? "o ATk X2 * X2

. . 2
> staircase size, A%, . (0T) » 6T  from saturation: consider shearing



Scaling of characteristic jam scale

e Saturation: Shearing strength to suppress clustering instability

Jam growth - profile corrugation - ExB staircase - U;E « B

1 |

- estimate, only

T 1
- saturated amplitude: or X4

1; VeniPi VT

e Characteristic scale

2V¢h4
2 —2 thi
A? ~ k72(OT) ~ S

7

Pi/ X2T X2 ™~ Xneo

- Geometric mean of Pi and /Xx2T:ambient diffusion length in 1 relaxation time

- ‘standard’ parameters: A ~ 10A.,



Jam growth qualitatively consistent with staircase formation

800 iT
2

2800 : ; .
i NL evolution ??7?
4 ﬁ )
? A XNC
A - outer radius:
R 600 .
2100 % 1 1 1 large chi
e % 0.7 0.8
. o AR TR S - smear out
© S I instability
® | max. "Jamiton" | or
.E \ royletg_rﬁtes o, - heat flux waves
R A 5»[5‘\ ) propagate faster
1:00 - harder to
% overtake, jam
X
q’ .
£ good agreement in
|—

early stage
700

0.2 0.4 0.6 0.8 1.0 03 0.4 0.5 0.6 0.7 0.8
Normalised radius p Normalised radius p

Dif-Pradalier ‘13 caveat: based on model with compressional waves




E < B staircase visible on fluctuation correlations

lRfm
(@

shear flow shear flow
Direct exp. characterisation difficult: ¢ l T T
flows, profiles & gradients
Shear layers in staircase: g
e eddies stretched, tilted, fragmented -
e predict quasi-periodic decorrelation
turbulent fluct. { | Step locations at flow shear extrema
. . jf of
C@'(r. 9. t.(sr) = § 'i\qf)(f.o.t) ~(f—%-5‘r,0,t) ' - ol
[((r.0.0)2)~ (G(r+6r.,0,0)2)- ] % -
5
w Cy=1/2 when ér = L, S s
w testable with fast-sweeping reflectometry 3 sf .

120 " 140 160 180
Radius r/pg



Moderate fluctuation level & MHD-free plasmas: lRfm
optimal for staircase observation ©

- - d,.-._’ 5 }.'. )’;8
reﬂectometer s1gnal dS(r/at) ~ A, .'45.- A A

fast-sweeping reflectometry on Tore Supra  [Clairet RSI 10, Hornung PPCF 13]
w |ocalised measure, fast (~ ps), sweeping in X—mode : full radial profile dn
w routinely estimate L.



Staircase predicted. . .then observed experimentally lRﬁTl
@

Correlation length L/,
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» Large set: 179 staircase steps, so far  [Dif-Pradalier PRL 15 & Hornung, in prep.]

quasi-regularly spaced radial local minima of L.

reproducible: not random & robust w.r.t. definition of L.

tilt consistent with fiow shear around minima

no correlation to local g rationals ™ rules MHD out

consistent width [~ 10p;] & spacing [meso.] of local L. minima



When theoretical predictions lead to

experimental discovery

» flow width 0 ~ 11p; consistent with

(GYSELA obs. & ZF measurements
[Fujisawa PRL 04]

» turbulence-borne ™ not MHD
[Dif-Pradalier PRL 15 & Hornung, in prep.]
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Summary

e A model for ExB staircase formation

- Heat avalanche jam = profile corrugation - ExB staircase

- model developed based on analogy to traffic dynamics = telegraph eqn.

e Analysis of heat flux jam dynamics

- Negative conduction instability as onset of jam formation
- Growth rate, threshold, scale for maximal growth

- Qualitative estimate: scale for maximal growth A ~ 10A,

—> comparable to staircase step size



Ongoing Work
« This analysis < set in context of heat transport

 Implications for momentum transport? =»

— consider system of flow, wave population, wave

momentum flux

— time delay set by decay of wave population

correlation due ray stochastization - elasticity

— flux limited PV transport allows closure of system



Results:
* Propagating (radially) zonal shear waves

predicted, as well as vortex mode

 For 74, larger, Z.F. state transitions to LCO,

rather than fixed point

* Tqeny due elastization necessarily impacts

dynamics of L->1->H transition
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